
Using Runtime Analysis to

Guide Model Checking of Java Programs

Klaus Havehmd

QSS/Recom

NASA Ames Research Center

Moffett Fiehl, CA. USA

havelund©pt olemy, arc. nasa. gov,

http ://ase. arc. nasa. gov/have lurid

Abstract. This paper describes how two runtime analysis algorithms,

an existing data race detection algorithm and a new deadlock detection

algorithm, have been implemented to analyze Java programs. Runtime

analvsis is based on the idea of executing the program once. and ob-

serving the generated run to extract various kinds of information. This

information can then be used to predict whether other different runs may

violate some properties of interest, in addition of course to demonstrate

whether the generated run itself violates such properties. These runtime

anMyses can be performed stand-alone to generate a set of warnings. It

is furthermore demonstrated how these warnings can be used to guide

a rondel checker, thereby reducing the search space. The described tech-

ui,i.,<_ have b,_h impl_,n_nted m the h e d,'own lava model _he,'ke_

called .lava PathFinder.

Keywords Concurrent programs, runtime anaJvsis, race conditions, dead-

locks, prograzn verification, guided model checking..lava.

1 Introduction

Model checking of programs has received an increased attention from the for-

mM methods community within the last couple of years. Severn systems have

emerged that can model check source code, such as Ja_. C and C++ directly

(typically subsets of these languages) [17, 9, 4, 20, 28, 25]. The majority of these

systems can be classified as translators, which translate from the programming

language source code to the modeling language of the model checker. The Java

PathFinder 1 (JPF1) [17], developed at NASA Ames Research Center, was such

an early attempt to bridge the gap between .lava [12] and the PROMELA lan-

guage of SPIN [21]. A second generation of Java PathFinder (JPF2) [28] has

recently been developed at NASA Ames, which diverges from the translation

approach, and model checks bytecode directly. This system contains a home

grown Java Virtual Machine (JVM) specifically designed to support memory ef-

ficient storage of states for the purpose of model checking. This system resembles

the Rivet machine described in [3] in the sense that Rivet also provides its own

new JVM.

TD" major obstacle for mode[checking to sm'cev_l is of course the' manage-

ment of larg,, slai'o ,g)a('(,s. For this purpos(, :fl)str;t('tion t e('hni(lues hay(: been

studied heavily in the past .3 years [l&2, 13,8, II. .More recently, sp(,cial focus
•3' '7)has been put on abstraction environments for .lawt and C [5,6,_9, _0.14,25].

Alternatives to mo, lel checking have also b(,en tried, such a.s VeriSoft [11], which

perfl)rms stateless model checking of C++ progranls, an([ESC' [1()], which uses

a combination of stati(' analysis and theorem proving to analyze Modula3 pro-

grams. Of course static program an,'dysis techniques [7] is an entire separate

discipline, although it yet remains to be seen how w(>ll they can han(lle concur-

rency. An alternative to the above mentioned techniques is runtime artalys_s,

which is ba.sed on the idea of concluding properties of a program from a single

run of the program. Hence, executing the program once, and observing the run

to extract information, which is then be used to predict whether other different

runs may violate some properties of interest (in addition of course to demonstrate

whether the generated run violates such properties). The most known example

of a runtime analysis algorithm is the data race detection algorithm Eraser [26],

developed by S. Savage, M. Burrows, G. Nelson. and P. Sobalvarro. A data race

is the simultaneous access to an unprotected variable by several threads. An

important characteristic of this algorithm is that a run itself does not have to

contain a data race in order for data races in other runs to be detected. This

kind of ;algorithm will not guarantee that errors are found since it works on an

arbitrary run. It mav also may yieht false positives. What is attractive, however,

that the algorithm scales very well since only one run needs to be ex,'unined.

X.lso. in !.racr_,-_ Era._or ,)fton seen,._ t,j catch the l)r()l)lems it i_ (le._ign_d to _'at,h

independently of the run chosen. That is, the arbitrariness of the chosen run

does not seem to imply a similar arbitrariness in the analysis results.

The work presented in this paper describes an extension to .JPF2 to perform

runtime aa_alysis on multi-threaded .Java programs in simulation mode, either

stand-alone, or as a pre-run to a subsequent model checking, which is guided by'

the warnings generated during the runtime analysis. We implement the generic

Eraser algorithm to work for .lav_ and furthermore develop and implement a
11

new runtime analysis algorithm, ca..ed GoodLoek, that can detect deadlocks. We

furthermore implement a third runtime dependency analysis used to do dynamic

slicing of the program before the model checker is activated on the set of runtime

analysis warnings. Section 2 describes the Eraser algorithm from [26], and how

it is implemented in JPF2 to work on Java programs. Section 3 describes the

new GoodLock algorithm and it implementation. Section 4 describes how these

analyses, in addition to being run stand alone, can be performed in a pre-run

to yieht warnings, that are then used to guide a model checker. This section

includes a presentation of a runtime dependency analysis algorithm to reduce

the program to be model checked. Finally, Section 6 contains conclusions and a

description of future work.

2 Data Race Detection

This section des(:ribes tile Eraser algoritltm as presented in [26], ,_m,l how it has

been inlplemented in JPF2 to work on Java prograJns. A data race occurs when

two con('urr¢,nt threa(Is access a sh_ed variable and when at least one access is

a write, ;uld the threads use no explicit mechanism to prevent the accesses from

being simuh;lneous. The Er,'Lser algorithm detects data races in a program by

studying a single run of the program, and from this trying to conclude whether

any runs with data races are possible. We have inlplemented the generic Eraser

algorithm described in [26] to work for .lava's synchronization constructs. Sec-

tion 2.1 illustrates with an example how JPF2 is run in Eraser mode. Section

2.2 describes the generic Eraser algorithm, while Section 2.3 describes our im-

plementation of it for Java.

2.1 Example

The Java program in Figure 1 illustrates a potential data race problem.

I. class Value(

2, privage in¢ z " I;
3,

4. publzc synchronized void add(Value v){x = x _ v,Eer();>
5,

6 public inr ge_(){rstuxn x;}

9. class Task Ixtends Thread(

10. Valus vl; Value v2;

11.

12

13

14.

_5.

16.

z8.)
19.

public Task(Value vl,Value v2){

this vt = v_; thisv2 = v2;

thls.staxt();

)

public void run(){vt.add(v2);}

20. class _nin{ '

2t. public s%atic void main(String_] arks)(

22. Value vl = hey Valus(); Valus _2 = new Valus();

23. use Task(vl,v2); new Task(v2,vl);

24.)

2S.)

Fig. I. Java program with a data race condition.

Three classes are defined: The Value class contains an integer variable that

is accessed through two methods. The add method takes another Value object

as parameter and adds the two, following a typical object oriented programming

style. The method is synchronized, which means that when called by a thread,

no other thread can call synchronized methods in the same object. The Task

class inherits from the system defined Thread class, and contains a constructor

(lines 12-15) that is called when objects axe created, and a run method that is

callrd _'hon thrsr objrcfs ;_,,started with ttw start method. Finally, thr main

method in the Main cl;L_s starts the progr;uu. When running JPF2 in simulation

mode with the Era.set option switched on. a data race condition is found, am[

reported a.s illustrated in Figure 2.

eee*e*e • eee*eeeeeeeee**eee*e*e

Race condition!

..............................

Variable z in class Value

is accessed _protected.

eeee oe*eeeeeeeeeoeeeeeele*

From Task thread:

..........................

reed access

Valne._et line 6

Value,add line 4

Task,run line 17

From Task gkread:

..........................

write aCCele

Value.add line 4

Task.run line [7

=============================

Fig. 2. Output generated by JPF2 in Eraser simulation mode.

The report tells that the variable x in class Value is accessed unprotected, and

that this happens fr¢)l, the two) Task thrpads, from lines 4 and 6. respectively als-,

_t_o_,.._ _,,e call ch_tins ,'romt::: top-level run method. The problem detected is

that one Task thread can call the add method on an object, say vl, which in turn

calls the unsynchronized get method in the other object v2. The other thread

can simultaneously make the dual operation, hence, call the add method on

v2. Note that the fact that the add method is synchronized does not prevent its

simultaneous application on two different Value objects by two different threads.

2.2 Algorithm

The basic algorithm works as follows. For each variable x, a set of locks set(x) is

maintained. At a given point in the execution, a lock l is in set(x) if each thread

that has accessed x held I at the time of access. As an example, if one thread

has the lock 11 when accessing a variable z, and another thread has lock l_, then

set(x) will be empty after those two accesses, since there are no locks that both

threads have when they access the variable. If the set in this way becomes empty,

it means that there does not exist a lock that protects it, and a warning can be

issued, signaling a potential for a data race.

The set of locks protecting a variable can be calculated as follows. For each

thread t is maintained the set, set(t), of locks that the thread holds at any time.

When a thread for example calls a synchronized method on an object, then the

thread will lock this object, and the set will be updated. Likewise, when the

thread leaves the method, the object will be removed from the lock set, unless

thethroadhaslo,'krdthrobjectinsomeothrrway.Whenthe,threadt ac('csscs a

variable .r (except for the first time), the following calculation is then prrformed:

set(x) := set(x) n srt(t);

if setlx) = { } then issue warning

The lock set associated to the variable is refined by taking the intersection

with the set of locks hel(t by the accessing thread. The initial set, set(x), of locks

of the variable x is in [26] described to be the set of all locks in the program.

In a .lava program objects (and thereby locks) are generated dyna_nically, hence

the set of all locks cannot be pre-calculated. Instead. upon the first access of the

variable, set(x) is assigned the set of locks held by the accessing thread, hence

set(t).

The simple algorithm described above yields too many warnings as explained

in [26].First of all,shared variablesare often initializedwithout the initializing

thread holding any locks. In Java for example, a thread can create an object

by the statement new C(), whereby the C() constructor willinitializethe vari-

ables of the object, probably without any locks.The above algorithm willyield

a warning in this case, although this situation is safe. Another situation where

the above algorithm yields unnecessary warnings is if a thread creates an ob-

ject. where after several other threads read the object's variables (but no-one is

writing after the initialization).

Wri_

IIR_VWMN

by mew tbe_l

new
J

......... _IIARI_) _tot)llIEr) _ _ --

aS.

Wr4_ ¢/

c_ . _t(x) := met(t)

" set(x) := inter_ct(_t(x),set(t))

J • ifi*Emotv(wtlx_) then warninw

Fig. 3. The Eraser algorithm associates a state machine with each variable J:.The

state machine describes the Eraser analysis performed upon access by any thread t.

The pen heads signify that lock set refinement is turned on. The "ok" sign signifies

that warnings are issued if the lock set becomes empty.

To avoid warnings in these two cases, [26] suggests to extend the algorithm by

associating a state machine to each variable in addition to the lock set. Figure 3

illustrat_,sthis_tatere;whine.Thevariable_tartsin theVIRGINstate.Uponthe

tirst wri_'e access t.o r.he vaxiable, the EXCLUSIVE state is _ntered. The lo(:k set

of the variable is not refined at this point. This allows for initialization without

locks. Upon a read access by another thread, the SHARED state is entered, now

with the lock refinement switched on, but without yiehling warnings in case the

lock set goes empty. This allows for multiple readers (and not writers) Mter the

initialization pha.se. Finally, if a new thread writes to the vmiable, the SHARED-

MODIFIED state is entered, and now lock refinements axe followed by warnings

if the lock set becomes empty.

2.3 Implementation

The Eraser algorithm has been implemented by modifying the home grown Java

Virtual machine to perform this analysis when the eraser option is switched

on. Two new .Java classes axe defined: LockSe_;, implementing the notion of a set

of locks, and LockMachine, implementing the state machine and lock set, that

is associated with each variable.

Lock Sets Associated with Threads Each thread is associated with a LockSet

object, which is updated whenever a lock on an object is taken or rele,_ed. The

interface of this class is:

_oia adciLock(znt obj_f ;

void deleteLock(in_ objref);

void intersecz(iLockSet locks);

boolean contains(int objref);

boolean isEmp_y();

}

This happens for example when a synchronized statement such as:

syncl_roniz,d(lock){

is executed. Here lock will refer to an object, the object reference of which will

then be added to the lock set of the thread that executes this statement. Upon

exit from the statement, the lock is removed from the thread's lock set, if the

lock has not been taken by an enclosing synchronized statement. This can occur

for example in a statement likel:

synchronized(lock)(

17ncbronized(lock){

(*)

L This statement illustrates a principle and does not reprint a programming practice.

[n this,re...,,le;tvingtho im.,r synchronized _r;tr,ement shottJdnot cause the lock

to be r_,rnoved fr(ml the thread's lock set since tho outf,r statement still causes

the lock to be held at point (*). The .JPF2 JVM _dready maintains a counter

that tracks the nesting, and this counter is then used to update the lock sets

correctly. Note that conceptually a synchronized method such as:

public synchronized void doSometbing() {

}

<:an be regarded as short for:

public void doSomething(){

*yuchronized (thim) {

}
}

State Machines Associated with Variables The LockMachine class has the

following interface:

interface tLockMachine {

void checkRead(ThreadInfo t_ead);

void eheckWrito(ThreadInfo th.read) ;

}

An object of the corresponding class is associated to each variable, and its

methods are called whenever a variable field is read from or written to. Variables

in.'ln,l, _ ir:sranc,_ ,.'_ri_tblo._ a._ woll as static vari:d)los of :4 cl,_s 1-_ _ ,t ,,ari,-hl_-,

local to methods since these cannot be shared between threads.

Instrumenting the Bytecodes A Java program is translated into bytecodes

by the compiler. The bytecodes manipulate a stack of method frames, each

with an operand stack. Objects are stored in a heap. The add method of the

Value class in Figure 1, for example, is by the Java compiler translated into the

following bytecodes:

M,thod void add(Value)

0 eload_O

[aload_0

2 getfiel 9 S7 <Field int x>

$ aload_1

6 invokevirtual 16 <Nothod int get()>

9 iadd

10 pu_field 87 <Field int x>

13 re_Lrn

The reference (this) of the object on which the add method is called, is loaded

twice on the stack (lines 0 and 1), wherafter the x field of this object is extracted

by the gel:field bytecode, and put on the stack, replacing the topmost this

reference. The object reference of the argument v is then loaded on the stack

(line 5), and the gel: method is called by the invokevirl;ual bytecode, the result

being stored on the stack. Finally the results are added and restored in the x

field of this object.

Th, .I P F2 .I V M ac_',,sses t he byteccJ_l_,s via t h_, .lavaClass packago [2:3 I, which

for each byte_'o,l,_ deliv,,rs a .lava object of ;l class specific for that byu_,'ode

Irecall that JPF2 itself is written in .lava). The JPF2 JVM extends this clips

with an execute method, which is called by the verification engine, and which

represents the semantics of the bytecode. The runtime analysis is obtained by

further annotating the execute method. For example, a get field bytecode is

delivered to the .IPF2 JVM as an object of the following class, containing an

execute method, which makes a conditional call (if the Eraser option is set) of

the chackRead method of the lock machine of the variable being read.

public class GETF[ELD extends Abstractlnstruction {

pubil¢ Ins_ruc_ionH_dls ozecuts(SyntssStat, e) {

if (Braaer. on) {

da. get[.ockSta_a (objref, fieidNasa), checkRead(_h) ;

}

}
}

A similar a/motation is made for the PUTFIELD bytecode. Similar annotations

are also made for static variable accesses such as the bytecodes GETSTATIC and

PUTSTATIC. and all array accessing bytecodes such as for example IALOAD and

IASTORE. The bytecodes MONITORENTER and HONITOREXIT, generated from ex-

plicitsynchronized statements, are annotated with updates of the lock sets of

rho _cc.ssing threads to record which locks are owned by the threads at anv

im: just _ arC' .,le oy:c,:c.,!,e_: !NVOKEVIRTUAL and INVGKESTATIC for calli_lg

synchronized methods. The INVOKEVIRTUAL bytecode is also annotated to deal

with the built-in wai_: method, which causes the calling thread to release the

lock on the object the method is called on. Annotations are furthermore made

to bytecodes like RETURN for returning from synchronized methods, and ATRHOW

that may cause exceptions to be thrown within synchronized contexts.

3 Deadlock Detection

In this section we present a new runtime analysis algorithm, called GoodLoek, for

detecting deadlocks. A classical deadlock situation can occur where two threads

share two locks, and they take the locks in different order. This is illustrated in

Figure 4, where thread 1 takes the lock Ll first, while thread 2 takes the lock

L2 first, wherafter, each of the two threads is now prevented from getting the

remaining lock because the other thread has it.

3.1 Exa_,nple

To demonstrate this situation in Java, suppose we want to correct the program

in Figure 1, eliminating the data race condition problem by making the ge_:

method synchronized, as shown in Figure 5, line 6 (we just add the synchronized

keyword to the method signature).

-, I. I

thread I Fhread 2

; L2 "

Fig. 4. Clmssical deadlock where task ! t'o.kes lock LI first and t;L4k '2 takes lock L2 first.

clas. Value{

2. przvate _.nt x = L_

3.

4, public synchronized void add(Value v){X = X + v,go_();}

5.

6, public syuchronizod int gst(){rsturn X;}

7. }

Fig. 5. Avoiding the data race condition by making the get method synchronized.

Now the x variable can no longer be accessed simultaneously from two threads,

said the Eraser module will no longer give a warning. When running JPF2 in

simulation mode with the GoodLock option switched on. however, a lock order

problem not present before is now found, and reported as illustrated in Figure

6.

Lock _rder ccn?_i¢_'

Locks on ValueJl and /alue#O

are taken in opposite order.

Lock on Yalue#l is taken last

by Task thread:

Value.add line 4

Task.run fins 17

Lock on Value#O is taken last

by Task tbrsad:

Valoe.add lioe 4

Taek,run line 17

=========================w====

F£g. 6. Output generated by JPF2 in GcmdLock simulation mode.

The report explains that the two object instances of the Value class, identified

by the internal object numbers #0 and #1, are taken in a different order by the

two Task threads, and it indicates the line numbers where the threads may

deadlock, hence where the access to the second lock may fail. That is, line 4

contains the call of the get method from the add method. The problem arises

due to the fact that the get method has become synchronized. One task may

now call the add operation on a Value object, say vl, which in turn calls the

ge_: method on the other object v2; hence locking vl and then v2 in that order.

Sincethe other t;Lsk win do the rew, rse, w_, haw, a situation ms illustrated in

Fig,re 4.

An algorithm that detects such lock cycles must in addition take into account

that a third lock may protect against a deadlock like the one above, if this lock

is taken as the first thing by both threads, before any of the other two locks are

taken. [n this situation no warnings should be emitted. Such a protecting third

lock is cMled a gate lock. The ;flgorithm below does not warn about a lock order

problem in ca.se a gate lock prevents the deadlock from ever happening.

3.2 Algorithm

The algorithm for detecting this situation is based on the idea of recording the

locking pattern for each thread during runtime as a lock tree, and then when the

program terminates to compare the trees for each pair of threads as explained

below. If the program does not terminate by itself, the user can terminate the

execution by a single stroke on the keyboard, when he or she believes enough in-

formation has been recorded, which can be inferred by information being printed

out. The lock tree that is recorded for a thread represents the nested pattern

in which locks are taken by the thread. As an artificial example, consider the

code fragments of two threads in Figure 7. Each thread executes an infinite loop.

where in each iteration four locks, L1, L2, L3 and L4. are taken and rele_sed in

a certain pattern. For example, the first thread takes L1; then L3: then L2: then

it releases L2; then takes L4: then releases L4: then releases L3: then releases

t.l rh.,,n 'qk,,- r.t .,*,.

Thread I: while(true){ Thread 2: whzle(true){

syncbronized(Ll){ syncbronized(Ll){

syncboronized(L3){ synchronizd(L2){

synch_ronizsd(L2){}; syncKronized(L3){}

synchronized(L4){} }

synchronized(L4){ synchronized(L4}_

synchroaized(L2){ synchronizGd(L3J{:'

synchxonized(L3){} syncbaronized(L2){}

} }
} }

} }

Fig. 7. Synchronization behavior of two threads.

This pattern can be observed, and recorded in a finite tree of locks for each

thread, as shown in Figure 8, by just running the program for a large enough

period to allow both loops to be iterated at least once. As can be seen from

the tree, a deadlock is potential because thread 1 in its left branch locks L3

(node identified with 2) and then L4 (4), while thread 2 in its right branch takes

these locks in the opposite order (ll, 12). There are furthermore two additional

ordering problems between L2 and L3, one in the two left branches (2, 3 and

9, 10), and one in the two right branches (6, 7 and 12, 13). However, neither of

l0

these pose ;t d_,adl(_ck l)r()l)l,,m since they ar,' pmt,,ctcd by the gate locks L1 (l,

8) respectively L4 (5, l l). [-[once, one warning should be issued, corresponding to

the fact that this program wouhl deadlock if thread I takes lock L3 and thread
"2 takes lock L4.

rhr_ I T'hre.,_l 2

L2
i

i , i

LI L4 LI L4

L3 L2 L2 L3

L4 L3 ! L3 ; L2

Fig. 8. Lock trees corresponding to threads in Figure 7.

The tree for a thread is built as follows. Each time an object o is locked,

either by calling a synchronized method m on it, as in o.m(...), or by executing

a statement of the form: synchronized(o){...}, the "lock" operation in Figure

9 is called. Likewise, when a lock is released by the return from a synchronized

method, or control leaves a synchronized statement, the "unlock' operation is

called. The tree has at any time a current node, where the path from the root

iid_'wif'.i;:,, the thro_td) :.'_ that node repr,_,,nts the lock ,esti,!g at thi:_ F,Ji,'

the executton: the locks taken, and the order in which they were taken. The lock

operation creates a new child of the the current node if the new lock has not

previously been taken with that lock nesting. The unlock operation just backs

up the tree if the lock really is released, and not owned by the thread in some

other way. For the program in Figure 7, the trees will stabilize after one iteration

of each loop, and will not get updated further. A print statement can inform the

user whe'_ever a new lock pattern is recognized and thereby a tree is updated,

thereby i,,aking it easier for the user to decide when to terminate the program

in case it is infinitely looping (if nothing is printed out after a while it is unlikely

that new updates to the tree will occur).

lock(Thread thread,Lock lock){

if thread does not already own lock{

if lock t,s a Jon o/ current{

current = that son

}.lee{
add lock as a ne_ son o/ cur_'ent;

curreP.t = nelo son;

print(_new pattern identified"); } } }

unlock(Thread thread,Lock lock){

if thread does not own lock in another malt{

current = parent of current node;}}

Fig. 9. Operations 'lock' and 'unlock' used for creating a lock tree.

1l

'_Vhen the program tvrmhuttes, the ana[ysL_ of the lock trees is initiatedby

a callof the 'analyze,'operation in Figure lO. This operation compares the trees

for each pair of threads'-'.For each pair (tl,t2) of trees,such as those in Figure

8, the operation 'analyzeThis' iscalled recursivelyon _dlthe nodes nt in tl;,'rod

forevery node r,_in t_ with the same lock _ nt, it ischecked that no lock below

nl in tt is abow., n2 in t2. [n order to avoid issuing warnings when a gate lock

prew?nts a deadlock, nodes in t_ are marked after being examined, and nodes

below marked nodes are not considered until the marks _e removed when the

analyzeThis operation backtracks from the corresponding node in tt. This will

prevent warnings from being issued about locks L2 and L3 in Figure 8, since

the nodes 8 and ll of thread 2 will get marked, when the trees below nodes 1

respectively 3 in thread 1 get examined. This reflects that nodes L1 and L4 are

such gate locks preventing deadlocks due to lock order conflicts lower down the

trees.

analyze(}{

for each pa*r (tl,t2) of thread trees{

for each immediate chdd node nl of t1 "s topnode{

analyzeThis[n_, ,t2); } } }

analyzeThis{ LockNode n, LockTree t) {

Set .\' = {at _ t [nt.lock == n.lock ,_ nt l# not below a mark}:

for each at in N{

check(n,nt I:

}:
mark nodes zn N;

_nai_z_ 1 his_ n ¢' ;a,l

anmark nodes m N:}

check(hi,ha){

for each chsld node n_l t'i;a o/ nl{

if nclh'ta.lock aa above n'2{

conflict()
}elee{

check(n_*"ta,n=) } }}

Fig. 10. Operations "analyze', 'analyzeThis', and 'check' used for analyzing lock trees.

The program in Figure 1 with the change indicated in Figure 5 has a potential

for deadlock, which is detected by the GoodLock algorithm since each of the

lock trees describes two locks on Value objects taken one after the other, but in

different order in the two trees. Note, however, that the detection of a deadlock

potential is not a proof of the existence of a deadlock. The program may prevent

the deadlock in some other way. It is just a warning, which may focus our

attention towards a potential problem. Note also, that the algorithm as described

only detects deadlock potentials between pairs of threads. That is, although

the analyzed program can have a very large number of threads, which is the

2 The operation is symmetric such that only one ordering of a pair needs to be exam-
ined.

12

majorsmmgthof thealgorithrn,deadlockswill onlybeflmndif theyinvolve
twothrrmts.A generalizationisneededto i_h,ntify ,h.'adlocks between more th,'m

two threads. The generalization must identify a subset of threads (trees) which

together create a conflict. Consider for example three threads, each taking 2 out

of 3 locks LI, L2 and L3 _us follows: <L1,L2>, <L2,L3> and <L3.LI>. One can

*_a,sily detect this deadlock by observing that as their first steps they together

take all the locks, which prevent them from taking their second step each.

3.3 Implementation

The major new Java class defined is LockTree, which describes the h)ck tree ob-

jects that axe associated with threads, and that axe updated during the runtime

analysis, and finally analyzed after program termination. Its interface is:

interface £LockTrle{

void Zock(Lock lock);

void tmlock() ;

void analyze(iLockYree otherTree) ;

}

The following bytecodes will activate calls of the lock and unlock opera-

tions in these tree objects for the relevant threads: MONITORENTER and

MONITOREXIT for entering and exiting monitors, INVOKEVIRTUAL and

INVOKESTATIC for calling synchronized methods or the built-in wait method

of the Java threading library, bytecodes like RETURN for returning from syn-

chronized methods, and ATRHOW that may cause exceptions to be thrown

.,,iml :.yJ,,ilr,)mzed. contexts..Methods are in addition provided for printing ,_u;

the lock trees, a quite useful feature for understanding the lock pattern of the

threads in a program.

4 Integrating Runtime Analysis with Model Checking

The runtime analyses as described in the previous two sections can provide

useful iaformatio_, to a programmer as stand ,'done tools. In this section we

will describe how runtime analysis furthermore can be used to guide a model

checker. The basic idea is to first run the program in simulation mode, with

all the runtime analysis options turned on, thereby obt41aning a set of warnings

about data razes and lock order conflicts. The threads causing the warnings,

called the race window, is then fed into the model checker, which will then

focus it attention on the threads that were involved in the warnings. For this to

work, the race window often must be extended to include threads that create or

otherwise influence the threads in the original window. A runtime dependency

analysis is used as a basis for this extension of the race window.

4.1 Example

Consider the program in Figure 1, troubled by a deadlock potential caused by

the change indicated in Figure 5. If, instead of applying the runtime analysis,

t3

weapplythe,.IPF2tn_.h,l,:h,,ckerto thispr_gt':un,the_h'adlockis imm,'diately
found;rodreporte<lvia;titerrortrail leadingfromtile initi+flstatetOthedead-
lockedstate.Suppose,however,thatthisprogramisa subprogramof a larger
prognmlthatspawnsotherthreadsnotinfluencingthebehaviorofthetwotasks
involvedin thedeadlock.In thiscasethemodelcheckerwill likelyfail to flint
thedeadlocksincethestatespacebecomesto big.Furthermore,if theother
threadsdon't,leadh)ck.thentheglobMsystemneverdea<llo<'ks,althoughthe
twotasksmay.Hence,sincetheJPF2mode[checkercurrentlyonlylooksfor
globaldeadlocks,it will neverbeableto findthislocalone.

Asanexperiment,theprogramw,xscomposedwithanenvironmentconsisting
of40threads,groupedinpairs,eachpairsharingaccesstoanobjectbyupdating
it (eachthreadassigns10,000differentvaluesto theobject).Thisenvironment
hasmorethani016°states.WhenrunningJPF2in runtimeanalysismode,it
printsout44messages,oneforeachtimeanewlockingpatternisrecognized(40
ofthepatternscomefromtheenvironment).Whenthesemessagesnolongerget
printed,after25seconds,onecanassume3thatallpatternshavebeendetected,
andbyhittingakeyonthekeyboard,thelockanalysisisstarted.Thisidentifies
theoriginaltwoTaskthreadsasbeingthesinners.Themodelcheckerisnow
launchedwhereonlytheMainthread,andthetwoTaskthreadsareallowedto
execute,andthedeadlockis foundbythemodelcheckerin 1.6seconds.The
Ma±nthreadis includedbecauseit startstheTask threads, as concluded based

on a dependency analysis.

4.2 Algorithm

Most of the work has already been done during runtime analysis. An additional

data structure mnst be introduced, the race window, which contains the threads

that caused warnings to be issued. Before the model checker is activated, an

extended race window is calculated, which includes additional threads that may

influence the behavior of threads in the original window. The extension is calcu-

lated on the basis of a dependency graph, created by a dependency anal_=is also

performed during the execution (a third kind of runtime analysis). This extended

window is then used in the subsequent model checking by freezing all threads not

in the window. That is, the scheduler simply does not schedule threads outside

the window.

Figure 11 illustrates the state variables and operations needed to create the

window and dependency graph, and the operation for extending the window. The

window is just a set of threads. The dependency graph (dgraph) is a mapping

from threads t to triples (.4, R, W), where .4 is the ancestor thread that spawned

t, R is the set of objects that t reads from, and W is the set of objects that t

writes to. Whenever a runtime warning is issued, the 'addWarning' operation is

called for each thread involved, adding it to the window. The operations 'start-

Thread', 'readObject', and 'writeObject' update the dependency graph, which

after program termination is used by the 'extendWindow' operation to extend

This is a judgment call of course.

14

thewin,low.Thed_,p,,tl_h'rwygraph is up, lat(,d when a thread starts another

thread with the a_:art() method, and when a thread reads from, or writes to a

variable in ;m o})j_t. The 'extendWin,low" operation performs a fix-point calcu-

lation by creating the set. of all threads "reachable" from the original window by

repeatedly including threads that have spawned threads in the window, and by

including threads that write to objects that are read by threads in the window.

The extended window is used to evahlate whether a thread should be scheduled

or not.

type Window = setof Thread;

type Dgraph = map from Thread to (Thread x setofObject × setofObjectl;

Window window; (* updated when a runtime warning is i_ued *)

Dgraph dgraph; (* updated when a thread starts a thread or accesses an object *)

addWarning(Thread thread)(

wtrtdow ---- w_ndow U (thread}}

stactThread(Thread father,Thread son)(
dgraph = dgra p 4- [son _ (father, {}. {})]].

readObject(Thread thread.Object object)(

let (.4, R,W) = dgraph(thread)(

dgraph = dgraph + [thread .--* (A, R U (object}, W)]}}

writeObject(Thread thread.Object object)(

let (A, R, iV) = dgraphithread){

dgraph = dgraph + Ithread _ (.4, R, VV U (obJect}}]}}

_,V_n,h,w .._t*,_.l%V;n.tow(V¢iq,!.,w _t'indo_'.Dg- apil daraph ! {

Window waiting = window:

while (waiting ¢ {}){

get thread from walttng;

if (thread _ passedl(

passed = passed _ (thread};

let (.4, R. I&'} = (|graph(thread){

if(A _ "topmost thread") wailing = wa_tin 9 (9 {A_;

wa_t_ng = wait_n 9 U

(thread" I lett W') = dgraph(lhread') in I¢" n R :_ {]-}:

}

return passed; _

Fig. 11. Operations for creating dependency graph and window.

4.3 Implementation

Two classes, whose interfaces axe given below, represent respectively the depen-

dency graph and the race window. The dependency graph can be updated when

threads start threads, or access objects. Finally, a method allows to calculate

the set of threads reachable from an initial window, based on the dependencies

recorded. The race window allows to record threads involved in warnings. Before

the model checker is launched the extendl/indou method will include threads

t5

that influence thv original window by calling thr reachable method. The mo_hq

checker schrduh,r will finally call the contains method whenever it, needs to

determine whether a particular thread is in the window, ira which c:Lse it will be

allowed to execute.

interface iDepead{

static void startThxsad(Thresdlafo father,ThreadIn/o son);

stat_c void readObjece(Threadlnfo th,int objref);

static void writsObject(ThreadIn.fo th.iat objref);

static HashSet reachable(RashSet threads);

)

interface iRacsWindow{

statlc void addWarniag(Thxead[nlo th);

stat_¢ void extendWindov();

Static boolsa_ contains(String thxsad_sas};

}

The following bytecodes are instrumented to operate on the dependency

graph: INVOKEVIRTUAL for invoking the s'car_: method on a thread; and

PUTFIELD, GETFIELD, PUTSTATIC, GETSTATIC for accessing variables.

5 The RAX Example

In this section we present an example drawn from a real NASA application.

The Remote Agent (RA) [24] is an AI-based spacecraft controller programmed

in LISP. that has been developed at NASA Ames Research Center. It consists

of rhr_,_: cnn_p_,n,mts: _ Planner that ,'"n,-a_es plans from mission g,_als: an

Executive that exe,'u,es _he plan_: and finally a Recovery system that monitors

the RA's status, and suggests recovery actions in case of failures. The Executive

contains features of a multi-threaded operating system, and the Planner and

•_.,_c e exchange messages in an interactive manner. Hence, this system is

highly vulnerable to muhi-threading errors. In fact, during real flight in May

1999. the RA deadlocked in space, causing the ground crew to put the spacecraft

on standby. The ground crew located the error using data from the spacecraft.

but asked as a challenge our group if we could locate the error using mo(ic'

checking. This resulted in an effort described in [15], which in turn refers to

earlier work on the RA described in [16]. Here we shall give a short account of

the error and show how it could have been located with runtime analysis, and

furthermore potentially be confirmed using model checking. For this purpose we

have modeled the error situation in Java. Note that this Java program represents

a small model of part of the RA, as described in [15]. However, although this

is not an automated application to a real full-size program, it illustrates the

approach.

The major two components to be modeled are events and tasks, as illustrated

in Figure 12. The figure shows a Java class Ewnt from which event objects can

be instantiated. The class has a local counter variable and two synchronized

methods, one for waiting on the event and one for signaling the event, releasing

all threads having called vait_.for_event. In order to catch events that occur

while tasks are executing, each event has an associated event counter that is

t6

incre;L_edwh_,rmve,rth,,ev_,ntissignaled.A t;Lskth,,nonly calls vait_for_event

in ca,se this (:ount_,r h_Ls not changed, hence, t,here have been no new events since

it w,_ last restarted from a call of unit_for_event. The figure shows the definition

of one of the t,_sks, the phmner. The body of the run method contains an infinite

loop, where in each iteration a comlitional caJl of unit_for.event is executed.

The condition is that no new events have arrived, hence the event counter is

unchanged.

clau Eveat{

iut count = 0;

public s_achroaized void vait_for.svsnt() (

tzy{uait();}catch(Intsrrupted_xceptioa e){};

}

public synchronized void $ig'nul_evsnt(){

count - (cotmt * I) % 3;

aotifylll();

}

class Plazk_er extends Thread{

Eveot e_eDtl,eveut2;

int coLmt _ O;

public void rtta()_

while(true)(

if (count -= eventl.cou_t)

eventl.waitforsvent();

:cun_ = eveut_.count;

eve_t2.si_al_event();

}

Fig. 12. The RAX Error in Java.

To illustrate JPF2's integration of runtime analysis and model checking, the

example is made slightly more realistic by adding extra threads as before. The

program has 40 threads, each with 10,000 states, in addition to the Planner and

Executive threads, yielding more than I016° states in total. Then we apply JPF2

in its special runtime analysis/model checking mode. It immediately identifies

the data race condition using the Eraser algorithm: the variable count in class

_-vent is accessed unsynchronized by the Planner's run method in the line: "if

(count =- eventl.couat)', specifically the expression: eventl.cotmt. This may

be enough for a programmer to realize an error, but only if he or she can see

the consequences. The JPF2 model checker, on the other hand, can be used to

analyze the consequences. Hence, the model .checker is launched on a thread win-

dow consisting of those threads involved in the data race condition: the Planner

and the Executive, locating the deadlock - all within 25 seconds. The error trace

shows that the Planner first evaluates the test "(count -- event l. count)', which

evaluates to true; then, before the call of event 1.vait_for_evenz () the Executive

17

ignals thq, ov(,nt, th,,r,,hy irwr,asing th,, ,,w,nt comm,r aml notifym_ all waiting

throads, of which th_ro however are Dt)flt' y_!t. Th(' Plann_,r now tlIlcon_liti(ma]ly

waits and misses the signal. The solution t_, this probl_!m is to _m,'lose tim con-

,litional wait in a critical section such that no events can occur in he, tween the

test and the wait. This error caused the, deadlock ill the ._pa,:_ craft.

6 Conclusions and Future Work

We have presented a new algorithrn, the Goodkock algorithm, for detecting dead-

lock possibilities in prograsns caused by locks being taken in different orders by

parallel running threads. The algorithm is based on an analysis of a single run of

the program, and is therefore an example of a runtime analysis algorithm in the

same family as the Eraser algorithm which detects data races. The algorithm

minimizes false positives by taking account for gate locks that "protect" lock or-

der problems ffurther down". An interesting observation is that a Java program

with everything stripped away except the taking and releasing of locks may still

have a state space that is too large to model check. The GoodLock algorithm

can even in this case be superior to a model checking of such a synchronization

skeleton. The 'algorithm is based on a post-execution analysis in contrast to the

Eraser algorithm which performs an on-the-fly analysis. We have furthermore

suggested how to use the results of a runtime analysis to guide a model checker

for their mutual benefit: the warnings yielded by the runtime analysis can help

f>::,as tbe _,_ar,'i, ,,f rh_- me,tel :'he('ker. which i-, t-rn can help eliminate false

positives, generated i)v the runtime analysis, or generate an error trace showing

how the warnings can manifest itself in an error. In order to create the small-

est possible self-contained sub-program to be model checked based on warnings

from the runtime anMysis, a runtime dependency analysis is introduced, which

very simply records dependencies between threads and objects. In addition to

implementing all of the above mentioned techniques, we have implemented the

existing generic Eraser algorithm to work for Java by instrumenting bytecodes.

This is according to one of the authors of [261 amongst, the first attempts outside

SRC to do this.

Future work will consist of improving the Eraser algorithm to give less false

positives, ill particular in the context of initializations of objects. The Good-

Lock algorithm will also be generalized to deal with deadlocks between multiple

threads. One can furthermore consider alternative kinds of runtime analysis, for

example analyzing issues concerned with the use of the built-in wait and notify

thread methods in Java. A runtime analysis typically cannot guarantee that a

progranl property is satisfied since only a single run is examined. The results,

however, are often pretty accurate because the chosen run does not itself have

to violate the property, in order for the property's potential violation in other

runs to be detected. In order to achieve even higher assurance, one can of course

consider activating runtime analysis during model checking (rather than before

as described in this paper), and we intend to make that experiment. Note that

it will not be necessary to explore the entire state space in order for this si-

18

m11lt;meous(',)rnl)irlati()n(>fr)Intimeatlalysis,m(irm)deJ('beckingto be)_sefui.
Eventhoughruatime:uudysis scales rel;ttively well, it. ,'dso suffers from memory

problems when ;malyzing large programs. Various optimizations of data struc-

tures used to record runtime analysis information can be considered, for example

the memory optimizations suggested in [26]. One can furthermore consider only

doing runtime analysis on objects that are really shared by first determining

the sh_ring struct_lre of the program. This in turn can be done using runtime

an,'dysis, or some form of static analysis. Of course, at the extreme the runtime

an_ysis can be performed on a separate comp_lter. We intend to investigate how

the runtime amdysis information can be used to feed a program slicer [14]. as an

alternative to the runtime dependency analysis described in this paper.

References

1. S. Bensalem, V. Ganesh, Y. Lakhnech, C. Muoz, S. Owre, H. Rue, J. Rushby,

V. Rusu, H. Sadi. N. Shankar, E. Singerman, and A. Tiwari. An Overview of SAL.

In Proceedings of the 5th NASA Langley Formal Methods Wor_hop. June 2000.

2. S. Bensalem, Y. Lakhnech, and S. Owre. Computing Abstractions of Infinite State

Systems Compositionally and Automatically. In CAV'98: Computer-Aided Vemfi-
cation, number 1427 in LNCS. 1998.

3. D. L. Bruening. Systematic Testing of Multithreaded .lava Programs. .kla_ter's
thesis. MIT, 1999.

4. T. Catte]. Modelin_ and Verification oe _(-'_+ Applications. In Proceedings _f

'.I C-'..i::3', 7",,.,/...... _ Uj,) ",,n._ io7 ,.o_ C,)n_tluct_o_, and .4r_a,y._ ,>1"S ,_t('ms.

volume 1384 of LNCS, LISBON. April 1998.

5. J. Corbett. Constr_lcting Compact Models of Concurrent Java Programs. In Pro-

ceed)ngs o/the .4 CM S_gsoft Symposium on Software Testing and Analysis, *larch
1'998. Clearwater Beach, Florida.

6. J. Corbett, M. Dwyer. J. Hatcliff. C. Pasareanu, Robby, S. Laubach, and H. Zheng.

Bandera : Extracting Finite-state .Models from Java Source Code. In Proceedings

of the 22rid Internatwnal Conference on Software Engmeemng, Limerich, Ireland,
Jane 2000. ACM Press.

7. P. Cousot and R. Cousot. Abstract Interpretation Frameworks. Journal o/Logic

and Computation, 4(2):511-547, August 1992.

8. S. Das, D. Dill, and S. Park. Experience with Predicate Abstraction. In CA V

'99: llih International Conference on Computer Aided Verification, volume 1633

of LNCS, 1999.

9. C. Demaxtini, R. Iosif, and R. Sist. A Deadlock Detection Tool for Concnrrent

Java Programs. Software Practice and Experience, 29(7):577-603, July 1999.

10. D. L. Detlefs, K. R. M. Leino, G. Nelson, and .I.B. Saxe. Extemted Static Checking.

Technical Report 159, Compaq Systems Research Center, Pale Alto, California,
USA, 1998.

11. P. Godefroid. Model Checking for Programming Languages using VeriSoft. In

Proceedings of the 2,_th A CM Symposium on Principles of Programming Languages,

pages 174-186, Paris, January 1997.

12. J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison
Wesley, 1996.

19

13. S. Graf and H. Sa),li. Constructioa of .-\b._tract State Graphs with PVS. In C,4V

"97. 6th [nternat_,,n,d Conference on Computer .4 ole'd Ver_]i,:atzon, volume 1.254 of
L,VCS, 1997.

14..I. Hatcliff, J.C. Corbett, M.B. Dwyer, S. Sokolowski, and H. Zheng. A Formal

Stu,lv of Slicing h)r Multi-threaded Programs with .IVM Concurrency Primitives.

In Proc. of the 1999 Int. Symposium ,m Statzc Anab.j._s, 1999.

1.5. K. Havelnml, M. Lowry, S. Park, C. Pecheur, .I. Penix, W. Visser. and .I. White.

Formal Analysis of the Remote Agent Before and After Flight. In Procee(lmgs of

the 5th NASA Langley Formal Methods Workshop, .hme 2000.

[6. K. Havehmd. M. Lowry, and J. Penix. FormM Analysis of a Space Craft Controller

using SPIN. In Proceedings of the ,_th SPIN workshop. Pans. France, November

1.998. To appear in IEEE Transactions of Software Engineering.

17. K. Havelund and T. Pressburger. Model Checking Java Programs using Java

PathFinder. International Journal on Software Tools for Technology Transfer

(STTT), 2(4):366-381, April 2000. Special issue of STTT containing selected sub-

missions to the 4th SPIN workshop, Paris, France, 1998.

18. K. Havelund and N. Shankar. Experiments in Theorem Proving and Model Check-

ing for Protocol Verification. In M-C. Gaudel and J. V¢oodcock, editors, FME'96:

[nduztrial Benefit and Advances in Formal Methods, volume 1051 of LNCS. pages

662-68l. Springer-Verlag, 1996. An experiment in program abstraction.

19. K. Havelund and .I. Skakkebaek. Applying Model Checking in Ja_-a '_,_rification.

In Proceedmgs of the 7th Workshop on the SPIN Ver_fi,:atzon System. volume 1680

of LNCS. Toulouse. France.. September 1999.

20. G. Holzmann and M. Smith. A Practical Method for Verifying Event-Driven Soft-

ware. In Proc. ICSE99. ;nternat2onal Conference on Software Enymeerlng. Los

!'_',_i__,. I_EE/AO.M. May 1999.

2]. G..I- Hobmarn. The Model Checker Spin. IEEE Tra.:_. _,n Software Eng*neemn9,

23(5):279-295. May 1997. Special issue on Formal Methods in Software Practice.

22. R. Iosif, C. Demaxtini, and R. Sisto. Modeling and Validation of JAVA Muhi-

threaded Applications using SPIN. In Proceedings of the Fourth Workshop on the

SP[:V Vemfication System, Paris. November 1998.

23..IavaClass. http://_ww.inf.fu-berlin.de/ dahm/.IavaCla,ss/+.

24. N. Muscettola, P. Nayak, B. Pelt, and B. Williams. Remote Agent: To Boldly

Go Where No AI System Has Gone Before. Artificial Intelligence, 103(1-2):5-48,

August 1998.

25. D. Park, U. Stern, and D. Dill. .Java Model Checking. In Proc. of the Fwst

International Workshop on Automated Program Analysis. Testin 9 and Verification,

Ltmeric_k, Ireland, June 2000.

26. S. Savage, M. Burrows, G. Nelson, and P. Sobalvarro. Eraser: A Dynamic Data

Race Detector for Multithreaded Programs. ACM Transactions on Computer Sys-

tems, 15(4):391-411. November 1997.

27. W. Visser, K. Havelund, G. Brat, and S. Park..lava PathFinder - Second Gener-

ation of a .Java Model Checker. In Proc. of Post.CA V Workshop on Advances in

Vemficatwn. Chtcago, .July 2000.

28. W. Visser, K. Havelund, G. Brat, and S. Park. Model Checking Programs. In Proc.

of ASE'2000: The 15th IEEE International Conference on Automated Software

Engmeering. IEEE CS Press, September 2000.

29. W. Visser, S. Park, and J. Penix. Using Predicate Abstraction to Reduce Object-

Oriented Progranrs for Model Checking. Submitted for publication.

2O

